organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-amino-5-cyano-2-methyl-6-(2-nitrophenoxy)nicotinate

Qing-Yun Ren,^a Hong-Wu He,^a* Yong-Yan Yao^a and Yu-Cheng Gu^b

^aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^bJealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, England

Correspondence e-mail: he1208@yahoo.com.cn

Received 8 October 2007; accepted 10 October 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.167; data-to-parameter ratio = 13.4.

In the title compound, C₁₆H₁₄N₄O₅, the benzene ring of the nicotinate residue is inclined at an angle of $64.06 (10)^{\circ}$ to the benzene ring of the nitrophenoxy group. The molecules are linked by two intermolecular $C-H\cdots O$ and $N-H\cdots N$ hydrogen bonds into a complex three-dimensional framework structure. $C-H\cdots\pi$ interactions also contribute to the stability of the crystal packing.

Related literature

For the biological importance of nicotine derivatives, see Yildiz (2004). For reference structural data, see Allen et al. (1987).

Experimental

Crystal data

β

$C_{16}H_{14}N_4O_5$	$\gamma = 88.835 \ (1)^{\circ}$
$M_r = 342.31$	V = 809.83 (11) Å ³
Triclinic, P1	Z = 2
a = 7.9831 (6) Å	Mo $K\alpha$ radiation
b = 8.8661 (7) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 12.2797 (10) Å	T = 294 (2) K
$\alpha = 69.012 \ (1)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
$\beta = 86.342 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: none 8410 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.167$ S = 1.07 3145 reflections	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
3145 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e \ A}^{-1}$
235 parameters	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm A}^{-3}$

3145 independent reflections

2146 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.023$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C4/C3/C2/C1/C5 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7 - H7B \cdots O4^{i}$ $N2 - H2A \cdots N3^{ii}$ $N2 - H2B \cdots O1$ $C7 - H7B \cdots Cg1^{i}$	0.97 0.86 (2) 0.92 (2) 0.97	2.52 2.23 (2) 1.84 (2) 2.92	3.229 (3) 3.040 (3) 2.593 (2) 3.716 (3)	130 157.5 (19) 137.1 (18) 140

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

The authors gratefully acknowledge financial support of this work by the National Basic Research Programme of China (grant No. 2003CB114400), the National Natural Science Foundation of China (grant No. 20372023) and Syngenta.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2374).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Yildiz, D. (2004). Toxicon, 43, pp. 619-632.

supplementary materials

Acta Cryst. (2007). E63, o4320 [doi:10.1107/S1600536807049616]

Ethyl 4-amino-5-cyano-2-methyl-6-(2-nitrophenoxy)nicotinate

Q.-Y. Ren, H.-W. He, Y.-Y. Yao and Y.-C. Gu

Comment

Pyridine derivatives are important compounds because of their presence in numerous natural products. For example, nicotine is found in a wide variety of plants, which play important roles in metabolism and possess a wide spectrum of biological activity (Yildiz, 2004). We report here the molecular structure of the nicotinate derivative (I) (Fig. 1). In the title compound, all bond lengths and angles are within normal ranges (Allen *et al.*, 1987) and the molecules are linked by two intermolecular C—H···O and N—H···N hydrogen bonds into a complex three-dimensional framework structure (Fig. 2). Weak C—H··· π interactions (Table 1, *Cg* is a centroid of the N1/C4/C3/C2/C1/C5 ring) also contribute to the crystal packing stability.

Experimental

A mixture of 4-amino-5-cyano-6-methanesulfonyl-2-methyl-nicotinic acid ethyl ester (1.4 g, 5 mmol) and catalytic solid K_2CO_3 (0.012 g, 0.1 mmol) were added to a solution of 2-nitro-phenol (0.7 g, 5 mmol) in anhydrous ethanol (20 ml), stirred for 2 h at 341 K and filtered. The filtrate was condensed and the residue recrystallized from dichloromethane/ petroleum ether to give pure 4-amino-5-cyano-2-methyl-6-(2-nitro-phenoxy)-nicotinic acid ethyl ester (yield 86%). Crystals of (I) suitable for X-ray structure analysis were grown from ethanol.

Refinement

Amine H atoms were refined with fixed isotropic displacement parameters $U_{iso}(H) = 1.2U_{eq}(N)$. All other H atoms were placed in calculated positions, with C—H distances in the range 0.93–0.97 Å and refined using a riding-model approximation, with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. The structure of (I). showing 50% probability displacement ellipsoids and the atomnumbering scheme.

Fig. 2. Part of the crystal packing of (I) showing the formation of dimers linked by hydrogenbonds (dashed lines).

Ethyl 4-amino-5-cyano-2-methyl-6-(2-nitrophenoxy)nicotinate

Crystal data	
$C_{16}H_{14}N_4O_5$	Z = 2
$M_r = 342.31$	$F_{000} = 356$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.404 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.9831 (6) Å	Cell parameters from 2185 reflections
b = 8.8661 (7) Å	$\theta = 2.5 - 24.8^{\circ}$
c = 12.2797 (10) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 69.012 \ (1)^{\circ}$	T = 294 (2) K
$\beta = 86.342 \ (1)^{\circ}$	Block, yellow
$\gamma = 88.835 (1)^{\circ}$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
$V = 809.83 (11) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2146 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.023$
Monochromator: graphite	$\theta_{\text{max}} = 26.0^{\circ}$
T = 294(2) K	$\theta_{\min} = 1.8^{\circ}$
φ and ω scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -9 \rightarrow 10$
8410 measured reflections	$l = -15 \rightarrow 15$
3145 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.167$	$w = 1/[\sigma^2(F_o^2) + (0.0992P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max} < 0.001$
3145 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2580 (2)	0.4848 (2)	0.52656 (15)	0.0386 (4)
C2	0.3286 (2)	0.6325 (2)	0.52562 (14)	0.0370 (4)
C3	0.3988 (2)	0.6298 (2)	0.62939 (15)	0.0395 (4)
C4	0.3964 (2)	0.4853 (2)	0.72421 (15)	0.0410 (5)
C5	0.2584 (2)	0.3490 (2)	0.63016 (15)	0.0406 (5)
C6	0.1914 (2)	0.4850 (2)	0.41669 (15)	0.0410 (5)
C7	0.0793 (3)	0.3396 (3)	0.31026 (17)	0.0582 (6)
H7A	0.1691	0.3657	0.2494	0.070*
H7B	-0.0098	0.4180	0.2844	0.070*
C8	0.0149 (3)	0.1740 (3)	0.3342 (2)	0.0666 (7)
H8A	0.1043	0.0976	0.3587	0.100*
H8B	-0.0281	0.1683	0.2645	0.100*
H8C	-0.0733	0.1492	0.3949	0.100*
C9	0.1826 (3)	0.1880 (2)	0.64853 (17)	0.0545 (6)
H9A	0.2494	0.1351	0.6051	0.082*
H9B	0.0707	0.2029	0.6221	0.082*
Н9С	0.1790	0.1227	0.7301	0.082*
C10	0.4724 (2)	0.7727 (2)	0.63351 (15)	0.0444 (5)
C11	0.4771 (3)	0.3499 (2)	0.91776 (16)	0.0470 (5)
C12	0.3363 (3)	0.2736 (3)	0.98573 (16)	0.0536 (6)
C13	0.3529 (3)	0.1356 (3)	1.08299 (17)	0.0643 (6)
H13	0.2578	0.0829	1.1267	0.077*
C14	0.5091 (3)	0.0763 (3)	1.11508 (18)	0.0649 (7)
H14	0.5206	-0.0165	1.1806	0.078*
C15	0.6482 (3)	0.1545 (3)	1.05021 (19)	0.0659 (7)
H15	0.7544	0.1158	1.0729	0.079*
C16	0.6325 (3)	0.2898 (3)	0.95177 (17)	0.0569 (6)
H16	0.7281	0.3409	0.9079	0.068*
N1	0.3292 (2)	0.35024 (18)	0.72735 (13)	0.0438 (4)
N2	0.3315 (2)	0.7694 (2)	0.43277 (15)	0.0493 (5)
H2A	0.376 (3)	0.855 (3)	0.4358 (18)	0.059*
H2B	0.280 (3)	0.763 (2)	0.3694 (18)	0.059*
N3	0.5293 (3)	0.8913 (2)	0.63011 (14)	0.0612 (5)

supplementary materials

01	0.1840 (2)	0.60489 (18)	0.32916 (12)	0.0663 (5)
O2	0.14144 (18)	0.34349 (16)	0.41824 (11)	0.0534 (4)
O3	0.47215 (18)	0.49029 (15)	0.81893 (11)	0.0531 (4)
N4	0.1667 (3)	0.3358 (4)	0.95640 (18)	0.0800 (7)
O4	0.1477 (2)	0.4784 (3)	0.90715 (17)	0.0958 (7)
O5	0.0543 (3)	0.2366 (4)	0.9836 (3)	0.1476 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0385 (10)	0.0368 (10)	0.0419 (10)	0.0019 (8)	-0.0053 (8)	-0.0154 (8)
C2	0.0370 (10)	0.0324 (10)	0.0394 (9)	-0.0006 (8)	-0.0006 (7)	-0.0105 (8)
C3	0.0416 (11)	0.0341 (10)	0.0432 (10)	-0.0005 (8)	-0.0042 (8)	-0.0140 (8)
C4	0.0424 (11)	0.0408 (11)	0.0404 (10)	0.0002 (8)	-0.0074 (8)	-0.0146 (9)
C5	0.0417 (11)	0.0354 (11)	0.0441 (10)	0.0013 (8)	-0.0072 (8)	-0.0130 (8)
C6	0.0423 (11)	0.0376 (11)	0.0425 (10)	-0.0002 (8)	-0.0053 (8)	-0.0131 (9)
C7	0.0720 (15)	0.0594 (14)	0.0481 (11)	-0.0071 (11)	-0.0169 (10)	-0.0227 (10)
C8	0.0756 (16)	0.0589 (15)	0.0743 (15)	-0.0113 (12)	-0.0163 (12)	-0.0322 (12)
C9	0.0711 (14)	0.0367 (11)	0.0512 (11)	-0.0104 (10)	-0.0162 (10)	-0.0074 (9)
C10	0.0547 (12)	0.0395 (12)	0.0390 (10)	-0.0004 (9)	-0.0093 (9)	-0.0130 (9)
C11	0.0591 (13)	0.0450 (12)	0.0383 (10)	-0.0033 (10)	-0.0112 (9)	-0.0149 (9)
C12	0.0527 (13)	0.0674 (14)	0.0428 (10)	0.0028 (11)	-0.0069 (9)	-0.0217 (10)
C13	0.0697 (16)	0.0748 (16)	0.0397 (11)	-0.0108 (13)	0.0027 (10)	-0.0105 (11)
C14	0.0813 (17)	0.0661 (15)	0.0391 (11)	0.0015 (13)	-0.0136 (11)	-0.0074 (10)
C15	0.0618 (15)	0.0741 (16)	0.0554 (13)	0.0050 (12)	-0.0206 (11)	-0.0128 (12)
C16	0.0514 (12)	0.0630 (14)	0.0502 (11)	-0.0086 (11)	-0.0118 (9)	-0.0109 (10)
N1	0.0500 (10)	0.0372 (9)	0.0434 (8)	-0.0004 (7)	-0.0106 (7)	-0.0122 (7)
N2	0.0650 (12)	0.0354 (10)	0.0452 (9)	-0.0090 (8)	-0.0114 (8)	-0.0098 (8)
N3	0.0888 (14)	0.0410 (11)	0.0522 (10)	-0.0149 (10)	-0.0131 (9)	-0.0123 (8)
01	0.1016 (12)	0.0464 (9)	0.0463 (8)	-0.0109 (8)	-0.0231 (8)	-0.0073 (7)
02	0.0730 (10)	0.0426 (8)	0.0482 (8)	-0.0033 (7)	-0.0205 (7)	-0.0175 (6)
03	0.0704 (10)	0.0435 (8)	0.0447 (7)	-0.0063 (7)	-0.0205 (7)	-0.0119 (6)
N4	0.0603 (14)	0.109 (2)	0.0623 (13)	0.0128 (14)	-0.0020 (10)	-0.0218 (13)
O4	0.0948 (15)	0.1149 (17)	0.0783 (12)	0.0484 (13)	-0.0232 (10)	-0.0348 (12)
05	0.0550 (14)	0.171 (3)	0.174 (3)	-0.0182 (16)	-0.0053 (14)	-0.010 (2)

Geometric parameters (Å, °)

C1—C5	1.404 (2)	С9—Н9А	0.9600
C1—C2	1.431 (2)	С9—Н9В	0.9600
C1—C6	1.481 (2)	С9—Н9С	0.9600
C2—N2	1.335 (2)	C10—N3	1.140 (2)
C2—C3	1.417 (2)	C11—C16	1.371 (3)
C3—C4	1.388 (2)	C11—C12	1.387 (3)
C3—C10	1.425 (3)	C11—O3	1.395 (2)
C4—N1	1.309 (2)	C12—C13	1.381 (3)
C4—O3	1.359 (2)	C12—N4	1.469 (3)
C5—N1	1.356 (2)	C13—C14	1.369 (3)
С5—С9	1.497 (3)	С13—Н13	0.9300

C6—O1	1.215 (2)	C14—C15	1.368 (3)
C6—O2	1.318 (2)	C14—H14	0.9300
С7—О2	1.457 (2)	C15—C16	1.375 (3)
С7—С8	1.486 (3)	С15—Н15	0.9300
С7—Н7А	0.9700	С16—Н16	0.9300
C7—H7B	0 9700	N2—H2A	0.86(2)
C8—H8A	0 9600	N2—H2B	0.92(2)
C8—H8B	0 9600	N4-04	1201(3)
C8—H8C	0.9600	N4—O5	1.214 (3)
C5—C1—C2	118.42 (15)	Н9А—С9—Н9В	109.5
C5—C1—C6	124.14 (17)	С5—С9—Н9С	109.5
C2-C1-C6	117.43 (15)	Н9А—С9—Н9С	109.5
N2 - C2 - C3	119 45 (16)	H9B-C9-H9C	109.5
$N_2 - C_2 - C_1$	123 34 (16)	N3-C10-C3	176.00 (18)
C_{3} C_{2} C_{1}	117 21 (15)	$C_{16} - C_{11} - C_{12}$	118 77 (18)
C_{4} C_{3} C_{2} C_{1}	118 35 (16)	C16-C11-O3	116.93 (18)
$C_{4} - C_{3} - C_{2}$	121 79 (16)	$C_{10} = C_{11} = 03$	124.21(18)
$C_{1}^{2} = C_{1}^{3} = C_{1}^{10}$	121.75 (16)	$C_{12} = C_{11} = C_{12}$	124.21(10)
N1 C4 O2	119.85 (10)	C_{13} C_{12} C_{12} N_4	120.4(2)
N1-C4-C3	119.80 (10)	C13 - C12 - N4	118.5(2)
N1 = C4 = C3	125.17 (10)	C11 - C12 - N4	121.4 (2)
03-04-03	115.03 (16)	C14 - C13 - C12	120.0 (2)
NI-C5-CI	122.69 (17)	С14—С13—Н13	120.0
NI	111.75 (15)	С12—С13—Н13	120.0
C1—C5—C9	125.56 (16)	C15—C14—C13	119.6 (2)
O1—C6—O2	120.82 (16)	C15—C14—H14	120.2
O1—C6—C1	123.74 (17)	C13—C14—H14	120.2
O2—C6—C1	115.44 (15)	C14—C15—C16	120.7 (2)
O2—C7—C8	107.72 (16)	C14—C15—H15	119.7
O2—C7—H7A	110.2	C16—C15—H15	119.7
С8—С7—Н7А	110.2	C11-C16-C15	120.5 (2)
O2—C7—H7B	110.2	C11-C16-H16	119.8
С8—С7—Н7В	110.2	C15—C16—H16	119.8
H7A—C7—H7B	108.5	C4—N1—C5	118.08 (15)
С7—С8—Н8А	109.5	C2—N2—H2A	120.3 (14)
С7—С8—Н8В	109.5	C2—N2—H2B	114.6 (13)
H8A—C8—H8B	109.5	H2A—N2—H2B	125 (2)
С7—С8—Н8С	109.5	C6—O2—C7	116.55 (14)
Н8А—С8—Н8С	109.5	C4—O3—C11	118.84 (15)
H8B—C8—H8C	109.5	O4—N4—O5	124.5 (3)
С5—С9—Н9А	109.5	O4—N4—C12	119.0 (2)
С5—С9—Н9В	109.5	O5—N4—C12	116.5 (2)
C5—C1—C2—N2	-178.52 (17)	O3—C11—C12—N4	1.1 (3)
C6—C1—C2—N2	2.4 (3)	C11—C12—C13—C14	2.2 (3)
C5—C1—C2—C3	1.8 (3)	N4—C12—C13—C14	-178.2 (2)
C6—C1—C2—C3	-177.30 (15)	C12—C13—C14—C15	-0.1 (3)
N2—C2—C3—C4	-179.08 (17)	C13—C14—C15—C16	-1.5 (4)
C1—C2—C3—C4	0.6 (3)	C12—C11—C16—C15	1.3 (3)
N2-C2-C3-C10	-0.3 (3)	O3—C11—C16—C15	178.09 (19)
	S /		· · ·

supplementary materials

179.41 (16)	C14-C15-C16-C11	0.8 (4)
-2.3 (3)	O3—C4—N1—C5	-178.43 (16)
178.96 (18)	C3—C4—N1—C5	1.2 (3)
177.40 (16)	C1—C5—N1—C4	1.5 (3)
-1.4 (3)	C9—C5—N1—C4	-178.27 (16)
-2.9 (3)	O1—C6—O2—C7	0.5 (3)
176.06 (16)	C1—C6—O2—C7	-178.49 (16)
176.76 (18)	C8—C7—O2—C6	-174.60 (17)
-4.2 (3)	N1-C4-O3-C11	0.3 (3)
176.23 (18)	C3—C4—O3—C11	-179.36 (16)
-4.8 (3)	C16—C11—O3—C4	118.4 (2)
-4.8 (3)	C12—C11—O3—C4	-64.9 (3)
174.18 (15)	C13—C12—N4—O4	150.4 (2)
-2.8 (3)	C11-C12-N4-O4	-30.0 (3)
-179.35 (17)	C13—C12—N4—O5	-30.2 (3)
177.6 (2)	C11—C12—N4—O5	149.4 (3)
	$179.41 (16) \\ -2.3 (3) \\ 178.96 (18) \\ 177.40 (16) \\ -1.4 (3) \\ -2.9 (3) \\ 176.06 (16) \\ 176.76 (18) \\ -4.2 (3) \\ 176.23 (18) \\ -4.8 (3) \\ 174.18 (15) \\ -2.8 (3) \\ -179.35 (17) \\ 177.6 (2) \\ 177.6 (2) \\ 178.33 \\ -2.3 (3) \\ -2.3 ($	179.41 (16) $C14-C15-C16-C11$ $-2.3 (3)$ $O3-C4-N1-C5$ $178.96 (18)$ $C3-C4-N1-C5$ $177.40 (16)$ $C1-C5-N1-C4$ $-1.4 (3)$ $C9-C5-N1-C4$ $-2.9 (3)$ $O1-C6-O2-C7$ $176.06 (16)$ $C1-C6-O2-C7$ $176.76 (18)$ $C8-C7-O2-C6$ $-4.2 (3)$ $N1-C4-O3-C11$ $176.23 (18)$ $C3-C4-O3-C11$ $-4.8 (3)$ $C12-C11-O3-C4$ $-4.8 (3)$ $C12-C11-O3-C4$ $-74.8 (3)$ $C13-C12-N4-O4$ $-2.8 (3)$ $C11-C12-N4-O4$ $-179.35 (17)$ $C13-C12-N4-O5$ $177.6 (2)$ $C14-C12-N4-O5$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	D—H···A
C7—H7B···O4 ⁱ	0.97	2.52	3.229 (3)	130
N2—H2A…N3 ⁱⁱ	0.86 (2)	2.23 (2)	3.040 (3)	157.5 (19)
N2—H2B…O1	0.92 (2)	1.84 (2)	2.593 (2)	137.1 (18)
C7—H7B···Cg1 ⁱ	0.97	2.92	3.716 (3)	140
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y+2$, $-z+1$.				

Fig. 1

